Microcontroller Compensated Micromachined Oscillator Circuit

Group 13: Megan Driggers, EE Heather Hofstee, EE Michaela Pain, CpE

Sponsored by: Dr. Reza Abdolvand

Oscillators Overview

- Oscillators are heartbeat of electronics
- Necessary for stable signals and proper clocking
- Clock signals ensure data is not lost in delays
- Crystal oscillators are most common

Micromachined Oscillator Overview

- Micromachined oscillators/resonators: fabrication and smaller
- Issues arise with temperature stability

Figure 1: 3D rendering of micromachined oscillator

Motivation

- Researchers at UCF work with thin-film piezoelectric-onsilicon (TPoS) microsystems resonators
- TPoS resonators: active compensation
- Project sponsor: Dr. Abdolvand

Figure 2: Fabricated oscillators on silicon

Goals and Objectives

- Goal: to build a PCB that stabilizes resistance of resistor
- Resistance \rightarrow Temperature
- To be used in testing TPoS oscillators
- Unique temperature and resonance frequency characteristics

Requirements

- Hardware Deliverables:
	- Controls resistance within mΩ
	- Protection for resonator/functional checks
	- Communication
		- Relay temperature and resistance to user
- Software Deliverables:
	- Controls resistance within mΩ
	- Correct speed of program for stability

Specifications

Overall System Design

LCD Selection

- The **TinSharp 16x2 screen** was selected as the Liquid Crystal Display (LCD) because:
	- Its size allowed for flexibility in the presentation of results and user prompts
	- Compatibility and cost

0 TCR Resistor

- The **10Ω resistor** was chosen as the 0 TCR resistor because:
	- Considering the 10V power source, a resistance greater than 10Ω would pull too much voltage
	- Low price point and small and standard packaging
	- The options shown are manufactured by Vishay Foil Resistors (a division of Vishay Precision Group) and have a TCR value of 0.2 ppm/°C

Microcontroller Series Selection

The **MSP430** series microcontroller was chosen because:

- Familiarity with the family of microcontrollers
- Low cost
- High resolution A/D convertor options within series
- D/A convertor options within series

Microcontroller Product Selection

The **MSP430FG47x** microcontroller was chosen because:

- Provides enough pins to connect LCD, user interface, and voltage readings
- Allows for an external crystal oscillator to increase clock speed
- Low cost
- Contains a D/A convertor
- Highest A/D resolution

Microcontroller Voltage Readings

Figure 3: Microcontroller ADC visual representation

- **Goal:** Maximize resolution of voltage readings through 16-bit A/D Convertor
- **How:** Manipulate input voltages to span over the entire microcontroller ADC input voltage range (0V to 1.5V)

 $\text{Gain}=\frac{1}{7}$ 7 **=** R_1 R_1+R_2 **Voltage Divider Circuit Gain**

Power Supply

The main power supply was chosen to be the **Agilent E3631A triple DC voltage output** because:

- Already present in Dr. Abdolvand's Lab
- Able to provide both $+10V$ and $-10V$ rails
- High stability/low voltage variation

Voltage Regulators

The most important aspect of voltage regulation for our project:

- ***Low noise***
- High efficiency
- Acceptable capacity

Linear voltage regulators would be the best option

EAGLE SCHEMATIC AND BOARD DESIGN

EAGLE Schematic Design

Main Power Supply (10V) to LCD Logic and Microcontroller Power Supply (3.3V)

Main Power Supply (10V) to LCD Backlight Power Supply (5V) Figure 6: 10V to 3.3V conversion circuit

Main Power Supply (10V) to Circuit Input Voltage (8.2V)

Figure 7: 10V to 8.2V conversion circuit

Voltage Reference (3V) for Microcontroller ADC and DAC

Figure 9: 3V voltage reference circuit

EAGLE Schematic Design

EAGLE Analog Schematic Design

Figure 14: Analog schematic

EAGLE Analog Schematic Design

Figure 14: Analog schematic

EAGLE PCB Design

Figure 15: PCB design

Populated PCB

Figure 16: Populated PCB

Populated PCB

Figure 16: Populated PCB

Software Functionality

- The purpose of the software is illustrated in the tasks below:
	- Calculating the resistance of the resonator
	- Communicating information between the user and device
	- Controlling the current passed into the resonator
- Other requirements include:
	- Operating in three modes:
		- **Standby**
		- Characterization
		- **Operational**
	- Scalable and efficient code

Programming Language

- **C** was selected as the programming language for this project because:
	- Often the language of choice for this type of application
		- Programs for embedded applications tend to not be object-oriented
	- Build-in and user-defined types, data structures and flexible control flow (1)
	- Previous background in C programming

Programming Environment

- **Code Composer Studio** was selected as the software development environment because:
	- Designed for TI's microcontrollers and embedded processors
	- Contains a multitude of tools for development and debugging embedded applications
	- Compatible with our microcontroller
	- Previous software experience

Resistance Control Algorithm

- A proportional integral derivative (PI) controller was used to implement control system to stabilize the resistance
	- Takes action based on past, present and prediction of future control errors
	- Delivers control output at desired levels Figure 18: Graphical Representation of

Figure 17: PID Control System

Source: https://www.elprocus.com/the-working-of-a-pid-controller/

Controller

Source: Analysis and Design of Feedback Systems by Astrom and Murray

Resistance Control Algorithm

- Our PI controller algorithm works as follows:
	- Continuously calculates the error
	- Calculates a correction based on proportional and integral terms
		- The P-term is proportional to the current error
		- The I-term is proportional to the integral of the error
	- Applies the correction to modify the current output
		- Which in turn affects the voltage and resistance
- Loop tuning was used to produce the optimal control function

Initial Control System Testing

Figure 19: Initial control system testing (constant K_p and K_i)

- Error $E(t)$ = Resistance-Desired Resistance
	- (For negative TCR)
- Controller = $K_p + \frac{K_i}{s}$ \mathcal{S}_{0}

• When the resonator's transfer function is approximated to a first order system of form:

$$
\frac{b}{s+a} \rightarrow b * e^{-at} * u(t)
$$

•
$$
K_p = \frac{2\zeta\omega_0 - a}{b}
$$
, $K_i = \frac{\omega_0^2}{b}$

- The 'b' for each system is dependent on its resistance and is different for each system.
- The data shows that for constant K_p and K_i values, the overshoot changes linearly with the system's resistance.
- Therefore, K_p and K_i are both inversely proportional to the resistance.

Resistance Control System Results

Figure 20: 15Ω Resistor overshoot analysis

Figure 22: 22Ω Resistor overshoot analysis

Figure 21: 15Ω Resistor time analysis

Figure 23: 22Ω Resistor time analysis

Program Flow

LCD Testing

- The evaluation of the software is critical for verifying the correct performance of the application
- The software component of this system was required to receive accurate voltage inputs and perform calculations and conversions appropriately
- The LCD was used to debug and present measurements to the tester during program development

Work Distribution

Budget

Current Progress

Challenges and Takeaways

- Difficulties:
	- PCB design, little experience
	- Software and hardware integration
- Lessons: Teamwork, research carefully, be flexible

Final Thoughts

- Acknowledgements
- Optimize current range
- Control loop for positive TCR device
- Write up user instructions

